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Abstract. The ab inifio Hartree-Fock crystalline orbital program CRYSTAL is applied to 
diamond, silicon, BN, BP, Sic  and AIP. The effects of the computational parameters 
controlling the accuracy of the infinite Coulomb and exchange series are analysed; the 
performances of five standard (but re-optimised in the valence part) molecular basis sets 
( S T O - 3 ~ ;  3 . 2 1 ~ ;  3 - 2 1 ~ *  ; 6 . 2 1 ~ ;  6 . 2 1 ~ ’ )  are documented with reference to equilibrium binding 
energy, lattice parameter and bulk modulus. The analysis is then extended, with the largest 
basis set, to transverse optical phonon frequencies, band-structure and charge-density data. 
The results show trends similar to those expected from molecular calculations; typically, the 
mean lattice parameter and bulk modulus errors obtained at a 6-21G* level are about +1% 
and +lo%, respectively. 

1. Introduction 

The Hartree-Fock(HF)-LCAO technique is by far the most widely available computational 
scheme for the study of the electronic structure of molecules; standard programs have 
been available for at least 15 years [ 11. 

In solid state physics ‘first-principle’ or ab initio calculations have become common 
only recently; most are based on density functional (DF) schemes [2], in conjunction with 
plane-wave (PW) basis sets and pseudopotential (PP) techniques [3]. There are many 
reasons for this choice. 

(i) The DF-PW-PP approach is the natural evolution of the ‘empirical pseudopotential’ 
techniques implemented more than 20 years ago for the qualitative and quantitative 
study of the band structure of crystalline compounds [4]. 

(ii) The orthogonality of the basis functions and their simple analytical form drast- 
ically reduce the complexity of the integral evaluation; the corresponding computer 
programs are not more than few thousand lines of code long. 

(iii) The use of the PP ensures in many cases (metals and small-unit-cell non-ionic 
compounds) a sufficiently rapid convergence of the total energy with respect to the basis 
set size. 

(iv) Finally, correlation effects are taken into account to some extent, through the 
‘exchange-and-correlation’ potential derived from the electron gas model. 

0953-8984/90/387769 + 21 $03 .500  1990 IOP Publishing Ltd 7769 
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The popularity of the DF-PW-PP method is only one of the reasons for the scant interest 
in solid state physics for the HF-crystalline orbital (CO)-LCAO method; one could add 

of 
(i) the prejudice against the HF method due to the qualitatively incorrect behaviour 

(ii) the lack of correlation and 
(iii) the much greater complexity of an ab initio HF-LCAO computational scheme with 

respect to DF-PW-PP methods, due to the non-orthogonality of the basis functions and to 
the triple-infinite summation over four-centre integrals (‘the calculation and manipu- 
lation of horrendous numbers of many-centre integrals’ [6]). 

the electron gas density of states at the Fermi energy [ 5 ] ,  

In spite of this situation, many arguments strongly suggest the need for ab initio HF- 

(i) In many situations, reference to chemical concepts. language, numerical tools is 
essential; typically, for molecular crystals, one must compare bulk and isolated-molecule 
results obtained with the same Hamiltonian, the same basis sets and possibly the same 
program, to obtain reasonable answers. Similar arguments hold for large classes of 
compounds, such as silicates. 

(ii) For large-unit-cell systems a local basis is far more convenient than the PW one; 
in the HF-CO scheme to be discussed below the cost of the calculation increases roughly 
linearly with the basis set in the unit cell (no fourth-power ‘explosion’). 

(iii) The considerable experience gained in molecular quantum chemistry in algor- 
ithms, computational devices and basis sets can be partially exploited in a HF-CO-LCAO 
scheme. 

(iv) As regards correlation effects, a posteriori corrections to the HF energy and 
energy-dependent quantities through correlation-only electron density functionals are 
available [7, 81, and have been tested [9]. The present work extends these tests, with 
excellent results. 

Alternatively, many-body perturbation theory methods or the closely related 
coupled-electron-pair models (see, e.g., [lo]) should shortly be transferred from the 
molecular to the non-metallic crystalline context. Indeed, recent calculations based on 
CEPA-o formalism have been carried out for diamond [ 111 and silicon [ 121. In another 
interesting development, the quantum Monte Carlo method [13] has been applied to 
diamond [14] with some success. One may expect that the HF method will prove useful 
in supplying the Slater determinant component of the Jastrow-Slater trial function [ 141 
commonly employed in the quantum Monte Carlo method. 

In the past 20 years a few HF computational schemes for periodic systems have been 
proposed [15] but, as far as we know, the only general (i.e. applicable to realistic 
polymers, slabs and crystals) implementation of those formal schemes is CRYSTAL, the 
program written by the present authors and collaborators [16-191. CRYSTAL is able to 
treat systems periodic in 3~ (crystals), 2D (slabs), I D  (polymers) and, as a limiting case, 
OD (molecules) of any symmetry (in particular, the 230 space groups and the 80 two- 
sided plane groups are available). It has been systematically improved and generalised 
in the past 10 years. Much effort has been devoted to the standardisation of the program 
and to the improvement of both speed and accuracy; a version of CRYSTAL is available 
from Quantum Chemistry Program Exchange (QCPE) [20], such that systems containing 
up to 150 AOS in the unit cell can be treated (more recent versions are able to treat larger 
unit cells). The implementation of the program has been accompanied by applications 
ranging from polymers [21] to slabs [22], from metals [23] to semiconductors [24], and 

LCAO calculations for solids. 
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from ionics [25] to molecular crystals [26]. The studies on semiconductors (diamond and 
silicon, graphite and BN), in particular, refer to an early version of CRYSTAL. when the 
numerical accuracy of the program was much lower than now, and they were performed 
with a minimal STO-~G basis [27, 281. 

The aim of the present paper is to document the quality of the results that one can 
obtain with the HF-LCAO-CO method as implemented in CRYSTAL for a relatively large 
set of semiconductors: diamond and silicon (in the diamond structure) and Sic ,  BN, 
BP, A1P (in the zincblende structure). Attention is mainly directed to energy-dependent 
quantities (equilibrium lattice parameter, bulk modulus, bulk modulus derivative, 
frozen phonon frequency and binding energy); charge distribution and electronic struc- 
ture data are also reported, in order to characterise the bond structure of the investigated 
compounds. 

In section 2 we discuss the influence of the computational parameters which control 
the truncation of the Coulomb and exchange infinite summations and the reciprocal 
space integrations on the accuracy of the results and on the cost. This requires some 
care, because at present total energy derivatives are evaluated numerically, an analytical 
gradient code (see, e.g. ,  [29]) being unavailable, for the moment at least. 

In section 3, basis set problems for periodic compounds are discussed; the packed 
nature of the compounds and the presence in condensed matter of electronic states quite 
at variance with respect to molecular situations (e.g. ions such as 02- and N'- are 
stabilised by the crystal field) prevent a straightforward use of the standard molecular 
basis sets. In particular, overdiffuse functions are not only not very useful (there are no 
'tails' to describe) but also costly (the cost in the present approach is mainly driven by 
the exponent of the most diffuse functions) and problematic (risk of linear dependence) 
[19]. Five standard [27, 28, 30-331 molecular basis sets (STO-3G, 3 - 2 1 ~ ,  3 - 2 1 ~ " ,  6-21 and 
6 - 2 1 ~ * )  are considered and re-optimised in the valence and polarisation part. 

Section 4 is devoted to the energy-related data: the energy versus volume curve is 
evaluated point by point and fitted to an equation of state (the Murnaghan [34] equation), 
which provides the equilibrium lattice parameter, the minimum energy, the bulk modu- 
lus and its derivative. The transverse optical phonon frequency is also evaluated with a 
third-order fit. A posteriori correlation corrections to the HF total energy according to 
the Colle-Salvetti [7] or the Perdew [8] functional are reported. 

Section 5 contains a brief comparison with density-functional results for binding 
energy, lattice parameter, bulk modulus and transverse optical phonon frequency. 

Section 6 describes the electron distribution and the band structure of the six com- 
pounds, to highlight similarities and differences in covalency and ionicity among them, 
with section 7 presenting our conclusions. 

2. Computational details 

In this section the fundamental equations of the HF-CO-LCAO method are given and the 
main features of the method illustrated. The definition of the computational parameters 
involved in the approximations will serve the discussion of the accuracy of results 
attainable, since at the moment no standard parameter set can be chosen in a range 
where the numerical error is negligible in the determination of the observables of 
interest. For a deeper insight the reader may consult [ 191. The periodic HF-LCAO scheme 
is similar to the molecular one from many points of view. The first step involves the 
evaluation of the mono- and bi-electronic integrals, which are required for the definition 
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of the Fock matrix F at each SCF iterative cycle: 

F72 = H72 + B:2 (1) 
where H and B respectively denote the mono- and bi-electronic contributions in the basis 
of the AO x f ,  g being a direct lattice vector (xf' = x,(r - s, - g )  and s, the position in the 
reference cell of the atom to which x, belongs). In particular, B;2 is the sum of the 
Coulomb and exchange terms as follows: 

B;2 = c c pi4 c t(xYx:lx~x2+'> - t(xYx:lx:x2+'>1 ( 2 )  
3.4 I h 

where P is the density matrix and the usual notation for the bi-electronic integrals has 
been adopted. The summations over h and 1 are over all the direct lattice vectors and 
thus extend to infinity; because of translational invariance the first AO can always be 
centred in the origin cell, denoted by the null vector 0. The Fock matrix so defined and 
the overlap matrix S g  are then Fourier transformed to the reciprocal space, in the Bloch 
function (BF) basis; eigenvalues E and eigenvectorsA are obtained after solving for each 
reciprocal lattice k-vector, in the first Brillouin Zone (BZ); the matrix equation is 

F(k)A(k) = S ( k ) A ( k ) ~ ( k ) .  (3) 
Once the eigenvectors are known, the new density matrix elements in the AO basis, are 
calculated by integration over the BZ volume: 

p;z = 7 i,, dkexp(1k *g)A;n(k)A2n(k)e[&, - &n(k)l (4) 

where E~ and 8 denote the Fermi energy and Heaviside function, respectively. At this 
point the Fock matrix in direct space (equation (1)) can be redefined and the whole 
process iterated until convergence is obtained. 

The implementation of the above equations requires the solution of some formal 
and computational problems concerning the infinite series on the direct lattice vectors 
g ,  h and 1 and the integration in reciprocal space. Treatments of the Coulomb and 
exchange series, which for periodic systems need to be considered separately, and a 
technique of integration in reciprocal space had to be implemented. Here our com- 
putational scheme is briefly sketched, in order to define the computational parameters 
discussed below. 

2.1. Coulomb series 

It is easily seen in equation (2) that, when Gaussian functions are used, an exponential 
decay is observed in integral values by increasing the modulus squared of g and E ;  
therefore, all terms, whose overlaps S:2 and Si4 are estimated to be less than a threshold 
10-sc, are neglected. The remaining terms, related to the infinite4 summation, are then 
classified into two sets. 

(i) To the long-range set belong all the interactions between the charge distributions 
hy xi} and the Ath-shell distributions p? within cell h ,  when their penetration is smaller 
than a threshold 1 0 - ' ~ ,  p: being defined as 

p: = c 2 c p:4x:x;+1 
3Eh 4 1 
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These interactions are evaluated by an Ewald-type technique [19,35], after a multipolar 
expansion of ,of up to LM order [ 171. 

(ii) In the short-range interaction region, only when the penetration between the 
charge distributions h: x:} and b: x$"} is greater than 10-bc, integrals are calculated 
exactly; otherwise they are estimated by using a bipolar expansion of Lc maximum order 
(see [19], section 11.4, and [36]). 

2.2. Exchange series 

As with Coulomb series, the exponential decay of integrals with increasing Ihl and 
Ih + 1 -gl allows neglect of all terms whose overlap between AOS couples, 
by x:} and h; xi"}, respectively, is less than a threshold lo-"..; a bipolar expansion 
of I , ,  maximum order is used for the calculation of integrals involving two distributions 
whose penetration is smaller than a threshold More critical is the truncation of 
the g and 1 summations, as the convergence rate of the series largely depends on the 
asymptotic behaviour of the density matrix [37]. For this purpose two other tolerances, 
p;, and pi, ,  are introduced and the truncation is based on an overlap criterion scaled on 
the expected density matrix behaviour (see [19], section 11.5). 

2.3. Integration in reciprocal space 

The problem of the evaluation of the integral (4) at each SCF cycle is a simple task for 
insulators, since the integrand function is quite regular. The integral is reduced to a 
weighted average over a set of sampling k-points belonging to a commensurate net, 
which reproduces the reciprocal lattice with a suitable shrinking factor. For silicon, using 
shrinking factors of 4, 8 and 12 (corresponding to 8,  29 and 72 sampling k-points in the 
irreducible wedge of the BZ) yields the following total energy values ( 6 - 2 1 ~  basis 
set, experimental lattice parameter): -577.819 686 au, -577.824285 au and 
-577.824 320 au, respectively. 

As no analytical evaluation of the energy gradients is available in CRYSTAL yet, the 
equilibrium data (the energy Eo,  the volume V o  and the bulk modulus B )  have been 
determined by interpolating on a certain number of energy points using the Murnaghan 
[34] equation of state: 

E ( V )  = Eo + ( B V / B ' ) [ ( V " / V ) B ' / ( B '  - 1) + 11 - VoB/(B' - 1) ( 6 )  
where the fourth parameter B' is the bulk modulus derivative. A careful check of the 
quality of the calculation, which is related to the values adopted for the computational 
parameters discussed above, is necessary, owing to the numerical nature of the eval- 
uation of the energy derivatives through equation (6). This point requires some 
comment, All the computational parameters previously illustrated act essentially in the 
same way: they define two or more subspaces, where interactions are evaluated with 
differing approximations; for example, in the Coulomb series theg infinite set is divided 
into two subsets by sc, one of which is completely neglected. Similarly, the b,,-parameter 
divides the h infinite series into two subsets: in the first, integrals are calculated exactly; 
in the second they are evaluated by a much cheaper multipolar expansion. 

A consequence of this 'direct space truncation scheme' of the infinite series is that 
the definition of the subsets of interactions evaluated at different levels of approximation 
depends on the cell geometry; for example, a contraction of silicon lattice parameter 
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Table 1 .  Total energy E for silicon at the experimental lattice parameter as a function of 
different approximation levels in the treatment of Coulomb and exchange infinite series. For 
the definition of computational parameters see text. A 6 - 2 1 ~  basis set is adopted. Nc and Ne,  
are the number of bi-electronic Coulomb (and exchange) integrals evaluated. t ,  and t2  are 
the cost for the integral evaluation and SCF steps in IBM 3090 (scalar mode) seconds. 

Computational parameters 
E 

Case sc hc t M  Lhl s,, be, pZx pi ,  Nc Ne, t ,  t2  (Hartree) 

I 4 5 5 3 4 3 5  9 29 19 96 42 -577.8301 
I1 5 6 6 4 5 4 6 11 66 45 199 44 -577.8244 
111 6 9 9 6 6 7 7 13 211 93 471 52 -577.8253 

from 5.43 to 5.03 A implies an increase of about 75% in the number of bi-electronic 
integrals to be calculated exactly. This migration of integrals among differing precision 
zones generates numerical noise in the calculated total energy versus lattice parameter 
curve, which may affect the fitted parameters. The numerical noise can be reduced by 
using quite strict tolerances; greater accuracy implies higher cost of the calculation and 
a fair compromise must be found. Alternatively, the approximation scheme can be 
frozen at a given lattice parameter (usually the minimum considered), so that the 
partition of the interactions among the different zones is the same for the calculation of 
all energy points. This method will be referred to in the following as the ‘geometry- 
independent’ approximation scheme. 

Table 1 shows the influence of the computational parameters on the total energy of 
silicon evaluated at the experimental geometry and on the cost of the calculation. In 
table 2 the four parameters of equation (6) are reported as obtained by 10 energy points 
calculated according to the conditions specified in table 1, and when using the ‘geometry- 
independent’ scheme or not. Table 1 indicates that in going from case I to case I11 
conditions the cost increases by a factor of 5; however, table 2 shows that, when the 
‘geometry-independent’ scheme is adopted, the differences resulting from case I and 
case 111 conditions for Eo,  a,, and B are quite small (negligible for total energy, less than 
0.1% for the lattice parameter and about 3% for the bulk modulus). The usefulness 
of the ‘geometry-independent’ scheme is confirmed by the root mean square of the 
difference between calculated and interpolated energies. On the basis of above data, 

Table 2. Calculated equilibrium parameters for silicon. Total energy E,,, lattice parameter 
U,,. bulk modulus Band bulk modulus derivative B’ have been interpolated by the Murnaghan 
equation with the same basis set and within the approximation levels illustrated in table 1.  u 
is the root mean square between the calculated and the interpolatedenergies. The ‘geometry- 
dependent’ and ‘geometry-independent’ computational conditions are defined in text. 

’Geometry-dependent’ conditions ’Geometry-independent’ conditions 

E,, a,, B E, ,  all B 
Case (Hartree) (A) (GPa) B’ u (Hartree) ( A )  (GPa) B’ u 

I -577.8333 5.427 187 18.9 2.7 x lo-‘ -577.8283 5.559 97 4.1 1.3 x 1W4 
I1 -577.8275 5.559 97 3.7 5.1 x lo-‘ -577.8280 5.561 94 4.1 1.7 x lo-‘ 
111 -577,8283 5.564 96 3.8 2.1 X lo-‘ -577.8278 5.565 94 3.9 8.9 x lo-’ 
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Table 3. The Murnaghan equation parameters for silicon as a function of the explored Aa 
lattice parameter range around the experimental value; n is the number of points used for 
the fitting, AE is the energy range in the explored interval. The other quantities are as in 
previous tables. 

Case I Case I1 Case I11 

Aa AE ail B a,! B a,? B 
n (A) (mHartree) (A) (GPa) B' (A) (GPa) B' (A) (GPa) B' 

~ ~~~~~ 

5 0.4 8 5.560 100 4.0 5.565 83 1.1 5.566 95 3.4 
6 0.5 9 5.560 99 3.8 5.561 92 3.9 5.565 96 3.8 
7 0.6 15 5.562 97 3.5 5.565 91 3.2 5.568 94 3.4 
8 0.7 19 5.561 98 3.8 5.562 94 4.0 5.566 95 3.7 
9 0.8 23 5.558 97 4.2 5.560 94 4.2 5.564 95 4.0 

10 0.9 35 5.559 97 4.1 5.561 94 4.1 5.565 94 3.9 

the calculations to be presented in the next section were performed at a level of approxi- 
mation similar to case 11. 

The last point to be discussed here is the influence on the best-fit parameters of the 
explored lattice parameter range and of the number of energy points considered. It can 
be seen in table 3 that in the range from six to 10 points (i.e. from h a  = 0.5 A to Aa = 
0.9 A) the ao, B and B' variations, at fixed computational conditions, are smaller than 
0.1%,2% and 30%, respectively; &is determined with better accuracy. The parameters 
obtained for a given Aa interval after doubling the number of points (i.e. halving the 
step) are very similar to the corresponding results in table 3. We conclude that the 
precision in the E,,, a,, and B calculated values is acceptable; for B' ,  higher numerical 
precision and. possibly, a more flexible interpolation curve would be necessary. 

3. Basisset 

The choice of the basis set is a crucial step of the calculation. As discussed in previous 
work [19], standard molecular and atomic basis sets must be modified to some extent 
for periodic systems, Present experience with LCAO periodic calculation has shown that, 
although for highly ionic crystalline systems such as alkali halides or metallic compounds 
the molecular basis sets are rather inadequate, often little modification is needed for 
covalent compounds. In the present paper this possibility is explored; standard molecular 
basis sets of the S T O - 3 ~  [27,28], N - 2 1 ~  and ~ - 2 1 ~ *  [30-331 ( N  = 3 or 6) type are adopted. 
In the 'minimal-basis' S T O - 3 ~  sets, each atomic function is represented by a Slater-type 
function, whose exponent has been optimised in an atomic calculation. The Slater 
functions are in turn expanded as a linear combination of three Gaussian-type functions 
(GTFS) according to the least-squares fitting criterion. In the N - 2 1 ~  sets the core functions 
are expanded in N GTFS, and there are two sets of valence functions, resulting from 
a contraction of two GTFS and one GTF, respectively. The Gaussian exponents and 
contraction coefficients have been determined variationally from atomic calculations. 
The addition of an asterisk to the basis set symbols denotes the inclusion of a shell of d 
polarisation functions. In the case of sp shells, the exponents of the s and p GTFS have 
been constrained to be equal for both the STO-3G and N-21G sets, in the interests of 
computational efficiency when evaluating the one- and two-electron integrals. For the 
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Table 4. Parameters of the valence basis sets used in the present calculation, 17 is the scale 
factor for the S T O - 3 ~  basis, (Y and care  the exponents and the coefficients for the N - ? I G  (or N- 
2 1 ~ * )  bases. The values in parentheses are the standard values; when only one set of data is 
reported, the unmodified standard basis set has been adopted for the crystalline calculation. 

C 1.73 
(1.72) 

BN B 1.46 
(1.50) 

N 1.98 
(1.95) 

S i c  C 1.55 
(1.72) 

Si 1.65 
(1.75) 

BP B 1.25 
(1.50) 

P 1.90 

Si 1.58 
(1.75) 

AIP AI 1.50 
(1.70) 

P 1.70 
(1.90) 

3.6645 
0.77054 
2.281 9 
0.465 25 
5.425 2 
1.1491 
3.6650 
0.77054 
1.079 1 
0.30242 
2.281 9 
0.465 25 
1.2186 
0.395 55 
1.079 1 
0.30242 
1.164 
0.268 

(0.946 16) 
(0.202 51) 
1.2186 
0.395 55 

-0.395 90 
1.215 8 

1.1994 
-0.41330 

1.224 4 
-0.395 90 

1.215 8 

1.2516 

1.1994 

1.2710 

1.2516 

0.25280 
(-0.32033) 

(1.1841) 
-0.371 50 

1.271 0 

-0.368 66 

-0.376 11 

-0.368 66 

-0.371 50 

-0.376 11 

-0.175 74 

0.23646 
0.86062 
0.231 15 
0.86676 
0.23797 
0.85895 
0.23646 
0.86062 
0.067 103 
0.95688 
0.231 15 
0.86676 
0.091 582 
0.93492 
0.067 103 
0.95688 

-0.002 133 3 
0.009 958 0 

(0.051 938) 
(0.972 66) 
0.091 58 
0.93492 

0.226 
(0.195 86) 
0.197 

(0.12433) 
0.297 

(0.28320) 
0.184 

(0.195 86) 
0.180 

(0.093339) 
0.140 

(0.12433) 
0.160 

0.130 
(0.093 339) 
0.110 

(0.063 909) 

(0.122 81) 

0.151 
(0.12281) 

0.8 

0.8 

0.8 

0.8 

0.5 
(0.45) 
0.8 

0.43 
(0.55) 
0.5 

(0.45) 
0.37 

(0.33) 

0.48 
(0.55) 

present study, the Slater exponent of the S T O - 3 ~  valence shell has been re-optimised with 
respect to the total energy of each crystalline compound. In the 3 - 2 1 ~  basis the only 
exponent of the outer valence shell has been re-optimised, which has also been used for 
the 6 - 2 1 ~  and the ~ - 2 1 ~ *  cases; for A1P the inner valence shell of aluminium had to be 
redefined, too, in order to reduce the overlap with the outer shell, whose exponent in 
the bulk is higher than in the isolated atom or ion. The two exponents and the contraction 
coefficients of this inner valence shell have been obtained by optimising the total energy 
of the Al+ isolated ion. The results of the optimisation process are shown in table 4. As 
expected, the exponents of the valence shells in the bulk are higher than in the isolated 
atom, the exception being carbon in Sic ,  which is slightly expanded in order to be able 
to allocate the extra electrons provided by Si (Sic is the most ionic among the six 
considered compounds). 

The relevance of a better description of the core was investigated by comparing the 
accuracy in the determination of the binding energy, lattice parameter and bulk modulus, 
obtained from calculations with the 3 - 2 1 ~  and 6-21G basis sets, respectively. The effect of 
the inclusion of one polarisation set in both 3-21G and 6 - 2 1 ~  sets was also analysed. 
Molecular polarisation function exponents for the first-row elements are known to 
require no significant adjustment in the description of crystalline atoms and the standard 
definition [30] can be safely used. On the other hand, a re-optimisation is often necessary 
for second-row-element d orbitals, whose role in the wavefunction description is more 
important than for first-row elements. The cost of the calculation for diamond and silicon 
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Table 5 .  Cost of the calculation for diamond and silicon as a function of the basis set 
(experimental lattice parameter). Of the Nc (and Ne%) bi-electronic Coulomb (and exchange) 
integrals evaluated, Mc (and M e x )  were approximated by using a bipolar expansion; N' is the 
number of symmetrised sums of integrals stored for the SCF cycle; all these numbers are in 
lo6 units. Computational parameters correspond to case I1 in table 1. t ,  and t2 are as in table 
1. Eight to 10 iterations were necessary to gain a convergence of 1 x lo-' au on total energy. 

S T O J G  3-21G 3-21G* 6-21G h-21G* 

C 
Nc 46 116 
Me 18 92 

Me, 21 66 
" 0.1 0.7 
t i  184 276 
t 2  8 16 

Nc 22 63 
M e  18 51 
Ne, 15 42 
Mcx 13 35 
N' 0.2 0.8 
tI 95 167 
t 2  14 53 

Ne, 27 79 

Si 

289 
232 
197 
164 

645 
48 

2.5 

143 
117 
96 
80 

382 
109 

2.4 

117 
93 
80 
67 

288 
18 

0.7 

66 
53 
44 
37 

199 
44 

0.9 

291 
234 
198 
165 

672 
43 

2.5 

149 
121 
100 
82 

473 
111 

2.5 

with the five adopted basis sets is reported in table 5. It must be noted that, as a 
consequence of the schemes used for the evaluation of the bi-electronic integrals (the 
expensive part of the calculation), the cost is dominated by those integrals involving 
valence (low-exponent) shells. This explains why little difference is observed in t ,  
for the STO-3G and 3 - 2 1 ~  calculations, if compared with the respective numbers of bi- 
electronic integrals to be evaluated; the cost-determining outer shell in the 3G basis is a 
contraction of three Gaussian functions, while in the 3-ZIG there is only one 'outer' 
Gaussian. So there seems to be apparently no real advantage in using the STO-3G basis 
set instead of the richer N - 2 1 ~ .  It must, however, be remarked that the relative cost of 
the SCF part is higher, the larger the basis sets, so that for large-unit-cell systems the 
choice of a minimal basis set might be necessary; this is the reason why it was considered 
in the present analysis. Another consequence of the 'outer Gaussian effect' is that the 
cost difference between the 3-ZIG ( 3 - 2 1 ~ * )  and 6-ZIG (6-21G*) calculation is only about 4% 
for diamond and 20% for silicon, which has a larger core. Much higher is the additional 
cost due to polarisation functions; computational time and integral storage increase by 
a factor of about 3, as the integrals involving d-type shells are quite expensive. Evidently 
the N-ziG and ~ - 2 1 ~ *  basis sets are not at all the best basis sets which may be adopted; 
they, however, represent a reasonable compromise between accuracy and cost of the 
calculation. Improvements in the basis set might be found in the use of a larger split- 
valence ~ - 1 1 1 ~  set and in the consideration of a second set of polarisation functions. The 
addition of an extra diffuse sp shell (exponents between 0.1 and 0.01 au) is on the 
contrary not possible at present, both because of the cost of the calculation (the 'outer 
Gaussian effect' mentioned above) and for numerical reasons (risk of near linear depen- 
dence, due to the very large overlap between neighbouring atoms). However, such 
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Table 6. Calculated lattice parameters and percentage error ( in  parentheses) with respect to 
experimental values. 

Calculated lattice parameter (A) (error (%)) 

ST03G 3-21G 3-?1G* 6-2 I G h-? lG* LDA Experimental 

C 3.581 3.569 3.562 3.577 3.574 3.561" 3.56Uh 
(+0.60) (+0.25) (+0.06) (+0.48) (+0.39) (+0.02) 

BN 3.601 3.630 3.607 3.637 3.619 3.606' 3.61Sh 

Sic 4.413 4.371 4.311 4.438 4.390 4.361.' 4.360,' 

BP 4.595 4.640 4.577 4.656 4.598 4.538' 4.53gh 

Si 5.450 5.525 5.441 5.558 5.501 5.433" 5.431h 

AIP 5.396 5.527 5.442 5.598 5.553 5.471d 5.451h 

(-0.39) (+0.41) (-0.22) (+0.61) (+0.11) (-0.24) 

(+1.22) (+0.25) (-1.12) (+1.79) (+0.69) (+0.02) 

(+1.26) (+2 .25)  (+0.86) (+2.60) (+1.32) (0.00) 

(+0.35) (+1.73) (+0.18) (+2.34) (+1.29) (+0.04) 

(-1.01) (+1.39) (-0.16) (+2.70) (+1.87) (+0.37) 

" [38].  
(391. 

' [40]. 
[41]. 

functions are expected to be much less useful in the present context than for molecules, 
because there are no 'tails' to describe in systems with such a packed structure. 

4. Energy-related results 

In table 6 the equilibrium lattice parameters obtained with the five basis sets mentioned 
above are compared with the experimental data. Our comments are as follows. 

(i) As expected from molecular experience, the lattice parameters obtained with the 
re-optimised STO-3G basis set are reasonably good, the maximum error being smaller 
than 2 % ;  on the contrary, the use of the standard [27,28] scale factors produces errors 
as large as 5 5%. 

(ii) Unlike molecules, where the 3 - 2 1 ~  and 6 - 2 1 ~  sets lead to very similar equilibrium 
geometries [31, 321, in periodic packed systems the accuracy in the description of the 
core is more important, particularly in compounds where a second row element is 
involved. The 3 - 2 t ~ ( * )  lattice parameters are always smaller than the 6 - 2 1 ~ ( * )  values, the 
difference being in some cases more than 1% ; the shorter equilibrium distances must be 
attributed to the 'improper' use of the valence functions of neighbouring atoms for the 
improvement of the core states. This hypothesis is confirmed by the much higher 
formation energies obtained with the 3-21G(*) bases than with the 6-21G(*) bases (see 
table 9). 

(iii) The addition of polarisation functions always yields a reduction in lattice par- 
ameters which can be as large as 1.5% when second-row elements are involved; some- 
thing analogous happens for molecules, where the inclusion of d functions generally 
results in shorter bond lengths [33]. 
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Table 7. Calculated bulk moduli and percentage error (in parentheses) with respect to 
experimental values. The percentage is referred to the first entry. which for BN is obtained 
by an empirical relation, as explained in [42]. 

Calculated bulk modulus (GPa) (error (96)) 
~ ~~ 

STO-3G 3.?IG 3-21G' h-?IG h-?IG* LDA Experimental 

c 543 46 1 49 1 460 476 438d 443d 

BN 496 406 429 402 416 367" 367h 
(+35.1) (+10.6) (+16.9) (+9.5) (+13.3) (0.0) 465' 

S i c  240 218 244 219 238 212" 224" 
(+7.1) (-2.7) (+8.9) (-2.2) (+6.2) (-5.4) 

BP 207 158 172 157 170 16Sh 173h 
t19 .7)  (-8.7) (-0.6) (-9.2) (-1.7) (-4.6) 190' 

Si 128 93 108 94 107 92a 99* 
+29.3) (-6.1) (+9.1) ( - 5 1 )  (+8.1) (-7.1) 

AIP 137 86 96 84 92 85* 86" 
+59.3) (-0.2) (+11.6) (-2.3) (+7.0) (-1.2) 

(+22.6) (+4.1) (+10.8) (+3.8) (+7.4) (-1.1) 

[38] .  
[40]. 
[43]. 
[41]. 

(iv) With the 6 - 2 1 ~  and 6-21G" basis sets regular trends are observed, similar to the 
ones resulting from molecular calculations. Note in particular that the error is larger for 
second-row-element systems; it is not clear at the moment whether this is due to larger 
correlation errors or to a different basis set efficiency. 

(v) Note finally that the most accurate basis set (6-21G") gives errors always smaller 
than 2%. 

A coherent picture is also obtained for bulk moduli B ,  which are reported in table 7. 
Owing to its limited variational freedom, the S T O - 3 ~  basis gives B-values too large, with 
errors as large as 50%. As regards split-valence calculations, while the core description 
has nearly no influence on this parameter, a conspicuous increase is induced by polar- 
isation functions, particularly when d-type orbitals are added to the 3 - 2 1 ~  set. At  the 
6 - 2 1 ~ *  level a regular trend with respect to the experimental data is observed; the mean 
error is 7.5%. In two cases (BN and BP), table 7 reports two reference data, the 
percentage error being evaluated with respect to the first entry. For BN the first 'exper- 
imental' datum is in fact obtained from a simple empirical relation [42], which produces, 
however, very accurate B-values for the 111-V semiconductors. The second entry, 
resulting from measurements of Cardona and co-workers [43], is affected by a declared 
experimental error larger than lo%, as is the second experimental value reported for 
BP [43]. Bulk modulus derivatives are not reported. Although values interpolated 
by equation (6) are all in the range between 3.4 and 4.4, which is quite reasonable 
(experimental results for diamond and silicon are 4.0 and 4.2 [38], respectively), numeri- 
cal error is such that fluctuations larger than 20% are observed with respect to different 
choices of energy points and no definite trend can be demonstrated. 

Another quantity of interest is the energy of the transverse optical mode at q = 0. In 
the 'frozen-phonon' harmonic approximation it is given as 

ETO = (m,k/,u)'12 
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Table 8. Transverse optical frequencies and percentage error (in parentheses) with respect 
to experimental (mean, for S i c  and BP) values. The 6-21G* basis set was used. 

Transverse optical frequency (THz) (error (%)) 

C BN S i c  BP Si A1P 

Calculatedd 44.60 33.85 25.65 27.56 17.02 13.92 
(+11.8) (+7.0) (+9.2) (+13.6) (+9.6) (+5.7) 

Calculatedh 30.1' 23.0' 15.1tjd 
(-4.8) (-5.2) (-2.4) 

Experimental 39.9' 31.62' 23.86' 23.9' 15.53' 13.17' 
23.11' 24.6' 

This work. 
LDA calculations 
[40]. 
[45]. 

e [46]. 

where k is the second derivative of the energy (in Hartrees) with respect to anion-cation 
displacements (in Bohr radii) from equilibrium, m, and p are the electron mass and the 
reduced mass of the unit cell respectively (both in atomic mass units), so that E,, is in 
Hartrees. To convert to the more commonly used units of terahertz, we use 

vTo = h-'ETO lo-'* = h-1mL/2(k/,u)1/2 lo-'* = 154.1079(k/p)"* 

where we have used the most recently available [44] values for the fundamental 
constants. The force constant is obtained from a third-order polynomial best fit per- 
formed on a sample of five energy points corresponding to different sublattice dis- 
placements. This interpolation is less troublesome than the calculation of bulk modulus, 
as no alteration of the unit-cell volume takes place and consequently numerical noise is 
less. Transverse optical frequencies calculated with the most extended basis set used, 
the 6 - 2 1 ~ * ,  are reported in table 8. Deviations from experimental data are all in the 
positive direction and of about the same order of magnitude as for bulk moduli; errors 
range from +5.7 to +13.6%. 

Binding energies reported in table 9 are obtained as the difference between total 
energies of the bulk and of the isolated atoms calculated with the same basis set, the 
only difference being the exponent of the outer Gaussian, which has been optimised 
separately for the bulk and for the isolated atom. A comparison between the 3 - 2 1 ~  and 
6 - 2 1 ~  columns shows that the first basis set describes more bound systems, because of the 
basis set superposition error, which favours the bulk situation when the core is poor. 
Polarisation functions supply appreciable contributions, of about 10%. The ~ - Z I G *  bind- 
ing energies are smaller than the experimental values by about 30%, the main source of 
error being the lack of correlation. An attempt at a posteriori recovery of correlation 
contributions is possible by using density functionals of the correlation energy, which 
have been proposed recently [7, 81. Two were tested; results are reported in table 10. 
Similarly to HF binding energy the correlation contribution to binding energy is evaluated 
as the difference between correlation energies of the bulk and of the atoms. Satisfactory 
agreement with experiment is gained this way and trends are regular; while the Colle- 
Salvetti functional always underestimates the correlation contributions, the Perdew 
functional gives values in good agreement with experiment. Preliminary tests seem to 
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Table 9. Calculated binding energies BE and percentage error (in parentheses) with respect 
to experimental values. BE = E,,,,,, - E,",,. .Ehull being the total energy (per atom pair) of 
the periodic systems and E,,,,,, the sum of the corresponding atom H F  energies calculated 
with the same basis sets. The experimental binding energies have been corrected for the 
zero-point vibration energies. 

STO-3G 3-2 I G 3-21G* 6-21G M I G *  Experimental 

C 
E,,,,(Hartree) 

BE (Hartree/cell) 
(error (%)) 

E,,,,(Hartree) 

BE (Hartree/cell) 
(error (%)) 

E,,,,(Hartree) 
E,,,,,(Hartree) 
BE (Hartree/cell) 
(error (%)) 

E,,,,(Hartree) 
E,,,,(Hartree) 
BE (Hartree/cell) 
(error (9'0)) 

E,,,,(Hartree) 
E,,,m(Hartree) 
BE (Hartree/cell) 
(error (%)) 

E,,,,(Hartree) 
E,,,,(Hartree) 
BE (Hartree/cell) 
(error (%)) 

E,,,,,(Hartree) 

BN 

E,,,,(Hartree) 

SIC 

BP 

SI 

AIP 

-74.8769 
-74.4573 

0.4196 
(-24.4) 

-78.3156 
-77.9517 

0.3639 
( - 26.9) 

-323.1471 
- 322.7926 

0.3545 
(-25.4) 

-361.4786 
-361.1768 

0.3018 
(-21.2) 

-571.4237 
-571.1279 

0.2958 
(-14.3) 

-576.2450 
-575.9735 

0.2715 
(-14.4) 

-75.3439 - 75.3794 
- 74.962 1 - 74.9621 

0.3818 0.4173 
(-31.2) (-24.8) 

-78.8419 -78.8693 
-78.4952 -78.4952 

0.3467 0.3741 
(-30.4) (-24.9) 

-325.1536 -325.1980 
-324.8255 -324.8255 

0.3281 0.3725 
(-30.9) (-21.6) 

- 363.6 197 - 363.6646 
-363.3898 -363.3898 

0.2299 0.2748 
(-40.0) (-28.3) 

- 574.9006 -574.9494 
-574.6889 -574.6889 

0.2117 0.2605 
(-38.6) (-24.5) 

- 579.7684 -579.8 110 
-579.551 1 -579.551 1 

0.2173 0.2599 
(-31.5) (-18.0) 

-75.6803 
- 75.3 179 

0.3624 
( - 34.7) 

- 79.1858 
- 78.8593 

0.3265 
( -34.4) 

- 326.771 1 
- 326.4844 

0.2867 
(-39.6) 

-365.4036 
-365.2009 

0.2027 
(-47.1) 

-577.8274 
- 577.6508 

0.1766 
( -48.8) 

-582.7028 
-582.5367 

0.1661 
( -47.6) 

-75.7139 
- 75.3 179 

0.3960 0.555" 
( - 28.6) 

-79.2130 
-78.8593 

0.3537 0.49gh 
(-29.0) 

-326.8118 
-326.4844 

0.3274 0.475' 
(-31.1) 

-365.4380 
-365.2009 

0.2371 0.383h 
(-38.1) 

-577.8730 
-577.6508 

0.2222 0.345d 
(-35.6) 

-582.7375 
- 582.5367 

0.2008 0.317' 
(-36.7) 

a [ l l ] .  

[471). 

[40]. 
Data from [38], corrected for thermal motion (9.0 mHartree, obtained from a Debye temperature of 1270 K 

(481. 
e Daia from [49], corrected for thermal motion (4.2 mHartree, obtained from a Debye temperature of 588 K 
[471). 

indicate that those functionals give negligible corrections to the other parameters of the 
Murnaghan equation, and in particular to the lattice parameter and the bulk modulus. 
More sophisticated schemes are probably required to take into account correlation 
effects on those quantities correctly. 

5. Comparison with density-functional results 

Comparison with the results of DF schemes is difficult both because of the wide variety 
of functionals in use, usually a local-density approximation (LDA), and because of 
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Table 10. Correlation correction to HF binding energies obtained with the &?IC* basis set and 
percentage error (in parentheses) with respect to experimental values. The Colle-Salvetti 
(cs) and the Perdew (P)  correlation-only density functionals have been used. 

Correlation correction (Hartree/cell) (error (5%)) 

HF HF + CS HF + P LDA Experimental 

C 0.3960 

BN 0.3537 

S i c  0.3274 

BP 0.2371 

Si 0.2222 

AIP 0.2008 

(-28.6) 

(-29.0) 

(-31.1) 

(-38.1) 

(-35.6) 

(-36.7) 

0.5109 

0.4649 

0.4320 

0.3401 

0.3128 

0.2882 

(-7.9) 

(-6.6) 

(-9.1) 

( -  11.2) 

(-9.3) 

(-9.1) 

0.5488 

0.4963 

0.4697 

0.3743 

0.3466 

0.3188 

(-1.1) 

(-0.3) 

(-1.1) 

(-2.3) 

(+0.5) 

(+0.6) 

0.584' 0.555 

0.526h 0.498 

0.490" 0.475 

0.423h 0.383 

0 .3W 0.345 

- 0.317 

(+5.2) 

(+5.6) 

(+3.2) 

(+10.4) 

(+3.2) 

" [38]. 
[40]. 

uncertainty in the quality of the basis set used. The DF values quoted in tables 6-8 and 
10 are all taken from the work of M L Cohen and his co-workers, using the DF-PP-PW 
scheme with the Wigner [50] interpolating functional. These studies appear to be the 
only ones which have systematically covered the same systems and properties as in the 
present work. We note that the calculated DF lattice constants (table 6) are in close 
agreement with experiment , while the bulk moduli are too small by typically 3-5% 
(table 7), the phonon frequencies too small by 3-5% (table 8), and the binding energies 
are too great by typically 5-10% (table 10). However, it is estimated that the DF binding 
energies would increase by a further 10% given a complete basis, further exaggerating 
the tendency of DF theory to over-bind. For example, the DF limit binding energy of 
diamond has been estimated to be 0.645 Hartree/cell [ll], and a recent highly accurate 
study in a local (muffin tin orbital) basis using the von Barth and Hedin [51] functional 
gave a binding energy for silicon of 0.384 Hartree/cell [52] ,  both considerably greater 
than the DF-PP-PW results [38] quoted in table 10. In any event, HF theory corrected by 
the Perdew [8] correlation-only functional gives by far the most accurate binding energies 
of any available theory. 

Another complicating factor when comparison with DF theory is made is the question 
of the exact form of functional used. Thus Wentzcovitch et a1 [40] have shown that 
changing from the Wigner to the Hedin and Lundqvist [53] functional causes approxi- 
mately a 1% decrease in lattice constant, thereby degrading the level of agreement with 
experiment. However, the bulk moduli increase by 396, so improving the agreement 
with experiment. Yin and Cohen [45] have shown that the same change in functional 
causes the calculated phonon frequencies to increase by 1%. It is worth mentioning here 
that DF calculations using Gaussian basis sets (and thus perhaps most comparable with 
the present work) are well known. Thus the results of Harmon et a1 [54] for silicon are 
5.488 A, 87 GPa, 0.356 Hartree/cell and 15.0 THz for lattice constant, bulk modulus, 
binding energy and transverse optical phonon frequency, respectively. The status of DF 
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Figure 1. Electronic total charge isodensity plots for ( a )  diamond, ( b )  B N ,  ( c )  Sic .  ( d )  BP, 
( e )  silicon and ( f )  AIP in the (110) plane at the experimental value V,, of the primitive cell 
volume. Charge density is in units of electrons per V,,, with a step of 1.5 electron per V,, 
between contiguous curves. The atomic positions are as in figure 2. 

calculations using local basis sets has been well stated by Chelikowsky [55]  as follows: 
‘typically, one has confidence in the calculated cohesive energies to within lo%, the 
lattice parameter to within 2-3%, and the bulk modulus to within 5%’. The present 
work demonstrates rather similar uncertainties within the HF method. 

6. Charge-density and band-structure data 

The electron charge-density maps obtained with the 6-21G* basis are reported in figure 
I ,  whereas figure 2 shows the difference between the crystalline charge density and the 
superposition of the spherical atomic densities. For the isolated atoms the standard 
atomic 6-21G basis sets [30-331 have been adopted. Complementary information is 
supplied in table 11, where Mulliken population data are reported. It must be stressed 
that population data for periodic compounds should be used in an even more qualitative 
sense than in molecular contexts; the large number of neighbours and the packed naiure 
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I I I  ,,----. I 

Figure 2. Electronic charge difference isodensity plots between the studied systems and the 
corresponding atomic superposition arrays. The plane and units are as in figure 1 .  The 
full and broken curves indicate positive and negative increases of 0.75 electron per V, , ,  
respectively; the chain curve line corresponds to zero charge density. 

of those compounds is such that small changes in the basis or in the partition scheme of 
the charge can produce changes as large as 0.2-0.3 electrons. 

Let us consider first the situation in the two homonuclear compounds. In both cases, 
as expected, there is a large build-up of electronic charge along the bonds; however, the 
deformation maps in figure 2 show that in the Si case the bond charge is much more 
diffuse than in diamond, where the lack of core p electrons allows the valence electrons 
to get nearer the nuclei. Figure 1 and table 11 also show that, whereas for diamond there 
is a monotonic decrease in the total charge density from the atomic positions to the point 
midway between the two atoms, for silicon there is a large plateau, of nearly constant 
density. In the case of silicon, the structure factors calculated from the HF charge density 
can be compared with the very accurate experimental data reported by Spackman [56] .  
The 6-21G* basis gives 0.208 for the ‘forbidden’ 222 reflection, to be compared with 
Spackman’s value of 0.193. The agreement factor R = C(IF,,,~ - ~ F c a , c ~ ) / ~ ~ F e x p ~  evalu- 
ated from the 18 non-equivalent structure factors is 0.22, not too far from the exper- 
imental uncertainty (R = 0.13 in Spackman’s refinement) and much better than that 
obtained from any previous calculation. In particular, the R-factors from LDA cal- 
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Table 11. Electronic distribution data for the six semiconductors. QA is the Mulliken gross 
charge of atom A ,  QAB is the bond population between atom A and B,  and QdA is the 
contribution from d orbitals to Q A .  p ,  is the minimum electron density along the A-B path, 
at a fractionary distance d, from atom A .  In the silicon case there are two symmetric minima, 
and a relative maximum midway the bond. as shown in figure 1. The calculations were 
performed with a 6 - ? 1 ~ *  basis set, at the experimental lattice parameter. 

q A  46 q A B  9 d A  4 d B  P m  
(electrons) (electrons) (electrons) (electrons) (electrons) (electrons Bohr-3) d, 

C 6.00 6.00 0.752 0.063 0.063 0.2901 0.50 
BN 4.14 7.86 0.590 0.078 0.023 0.1527 0.31 
S i c  12.19 7.81 0.576 0.215 0.013 0.1110 0.39 
BP 5.34 14.66 0.700 0.028 0.128 0.1306 0.70 
Si 14.00 14.00 0.678 0.087 0.087 0.0943 0.50 

0.0927 0.35 
AIP 12.20 15.80 0.575 0.155 0.041 0.0592 0.35 

culations are very large ( R  = 1.12 for the data in [45]), probably because the core 
correction to the pseudo-valence contribution has been carried out incorrectly [57]. 
Figures 1 and 2 reproduce well the general features of the corresponding experimental 
maps [56]. The electron density midway between neighbouring atoms is 0.094 (see table 
ll), to be compared with 0.085 from experiment, the difference being mainly due to 
basis set limitations. LDA calculations in PW basis sets give values of between 0.084 and 
0.089 electron Bohr-3 [56]. 

As regards the heteronuclear compounds, the electronic charges suggest the fol- 
lowing ‘ionicity’ order: S i c  > Alp, BN > BP. Actually, the BP charge transfer is 
‘reversed’, and boron appears to be negatively charged. The low ionicity of BP is 
confirmed by figure 1, which shows features along the atom-atom direction quite similar 
to the Si-Si ones; the bond charge in figure 2 appears to be localised roughly midway 
between the two atoms, whereas for S ic ,  AlP and BN it is nearer the ‘anion’. Note that 
the bond population of BP is much higher than those of the three other compounds. The 
electronegativity decreases both going from the first to the second row (second to third 
period) and going from group V to group 111. AlP and BN are ‘in-row’ 111-V compounds 
and show then roughly the same ‘ionicities’; BP is a ‘cross-row’ compound, and the two 
effects balance nearly exactly. The very high ‘ionicity’ resulting from our calculations 
for S i c  indicates that the ‘row’ effect is at least as important as the ‘group’ effect shown 
by BN and Alp. 

The ‘ionicity scale’ resulting from those data can be compared with the empirical 
electronegativity scales proposed by Pauling [58] and by Phillips [59]; the B minus A 
differences are 0.7, 1.0, 0.6, 0.1 and 1.1, 1.0, 0.6, -0.4 for Sic ,  BN, A1P and BP, 
respectively. In both cases the BP ionicity is quite small; on the Phillips scale it is 
‘reversed’. S i c  is more ionic than BN and AlP on the Phillips scale but not on the Pauling 
scale. The ‘ionicity scale’ recently proposed by Christensen et a1 [60] on the basis of 
quantum mechanical LMTO [61] calculations gives very similar ionicities for S ic ,  BN and 
Alp, which are much larger than the BP value (nearly null), in qualitative agreement 
with the present results. 

Table 12 reports the most relevant data of the band structure for the six compounds, 
which is shown in figure 3 .  It is well known that the eigenvalues of the one-electron Fock 
Hamiltonian are a poor approximation of the spectrum of quasi-particle energies of 
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Table 12. Band-structure main features. 

Valence band width (eV) Minimum gap (eV) 

Lower Upper Full Indirect Direct 

C 11.6 18.5 29.9 12.1 13.8 
BN 7.1 14.3 27.7 13.5 18.9 
S i c  6.4 11.7 21.7 8.6 13.1 
BP 6.9 13.0 22.0 7.6 10.0 
Si 5.9 11.5 17.4 6.0 8.4 
AIP 3.3 7.8 16.5 7.7 10.8 

20 
r\ > 
v 

W O  

-20 

5@ -20 
L T X  

M L T X  @ L T X  

Figure 3. Electronic band structures at the 
experimental lattice parameters along the 
path L-T-X: valence and lower conduc- 
tion bands. 

crystalline compounds. Band gaps and band widths are systematically overestimated by 
a factor of 2 or more; for example the ‘experimental’ vertical band gaps at r for diamond 
and silicon are 7.3 eV and 3.4 eV [62], respectively, to be compared with 13.8 eV and 
8.4 eVfrom the present calculations. On the contrary, the topology of the band structure 
and its main features are well reproduced. The minimum gap in the six cases is indirect 
(not vertical), as expected from experiment and in agreement with LDA calculations 
[40, 41, 631. The lowest point in the conduction band structure is at point X for the 
heteronuclear compounds, and along the T-X line in diamond and silicon. 

7. Conclusions 

The HF-CO-LCAO program CRYSTAL has been applied to six semiconductors; the effects 
of the computational parameters and of the basis set on binding energy, equilibrium 
distance, bulk modulus and transverse optical frequencies have been discussed; band- 
structure and charge distribution data have also been reported. 
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On the basis of these data, the following conclusions can be drawn. 

(i) The numerical accuracy of the computational scheme (treatment of the Coulomb 
and exchange series, reciprocal space integrations; more generally, stability and 
reliability of the code), although still far from that of molecular programs, is now 
sufficient to give quantitative answers not only for total energy, but also for geometry 
optimisations and vibrational frequencies. 

(ii) For semiconductors, standard but not very large molecular basissets can be used 
after the re-optimisation of the outer shell; on the contrary, more extended basis sets 
(‘triple-zeta’ type, or even larger) are to be discarded to avoid numerical instabilities 
and huge costs. 

(iii) The errors with respect to experimental data for lattice parameters, bulk moduli 
and binding energies are, roughly speaking, quite similar to those obtained in molecular 
calculations with similar basis sets; probably the main difference is the greater import- 
ance of the core description quality in condensed systems. 

(iv) The cost of such calculations is not very high (2-3 min on Cray-XMP machines 
per energy point); the availability of the program, from the present authors or from 
QCPE, should encourage more quantum chemists to carry out similar work. 

(v) Limitations of the approach are evident from the previous discussion; a better 
numerical-accuracy-to-cost ratio, and an analytical energy gradient option would be 
useful; work is in progress in both directions. 
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